Evolution of a coupled marine ice sheet–sea level model
نویسندگان
چکیده
[1] We investigate the stability of marine ice sheets by coupling a gravitationally self-consistent sea level model valid for a self-gravitating, viscoelastically deforming Earth to a 1-D marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small external forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea level change at the grounding line has an elastic component due to ongoing changes in ice sheet geometry, and a viscous component due to past ice and ocean load changes. When the ice sheet model is forced from steady state, on short timescales (< 500 years), viscous effects may be ignored and grounding-line migration at a given time will depend on the local bedrock topography and on contemporaneous sea level changes driven by ongoing ice sheet mass flux. On longer timescales, an accurate assessment of the present stability of a marine ice sheet requires knowledge of its past evolution.
منابع مشابه
Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss
The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution...
متن کاملCollapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin.
The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized de...
متن کاملExperimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1)
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) is a community eff...
متن کاملExperimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) is a community eff...
متن کاملMarine ice-sheet dynamics. Part 1. The case of rapid sliding
Marine ice sheets are continental ice masses resting on bedrock below sea level. Their dynamics are similar to those of land-based ice sheets except that they must couple with the surrounding floating ice shelves at the grounding line, where the ice reaches a critical flotation thickness. In order to predict the evolution of the grounding line as a free boundary, two boundary conditions are req...
متن کامل